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This supplementary material contains (1) additional com-
parison with the aleatoric uncertainty learning [2, 4, 5], (2)
additional analyses on uncertainty, generalization and self-
attention, and (3) additional details and discussions on our
framework.

S1. Comparison with Aleatoric Uncertainty
Here, we provide more details and analyses on the

aleatoric uncertainty learing method in our ablation study. In
contrast to our method which guides the uncertainty learn-
ing by the geometric uncertainty, the aleatoric uncertainty
is directly learned from data, by minimizing the following
loss,
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where (θ̂i,d, σ
2
i,d) indicate the network predicted mean and

variance of the underlying Gaussian of the motion parame-
ter i. θ̄∗i is the ground truth defined in the circular nearest
neighbor sense, as described in Sec. 3.2.2 of the main paper.
We note that the uncertainty learned in such a way is not
geometry-aware as the geometric solution and uncertainty
are not supplied in any way during training. Thus, the un-
certainty so obtained is not optimized to be fused with the
geometric solution, and may not match to the geometric
uncertainty in terms of numerical range. We present the
results of this method (“Aleatoric Uncertainty w/o fusion”)
in Tab. S1. In addition, we fuse the DNN prediction with
the geometric solution as a post-processing step, using the
learned uncertainty; this is denoted as “Aleatoric Uncertainty
w/ fusion”. It can be seen that the results are overall in-
ferior to those from UA-Fusion. To elucidate its behavior,
following the study in Sec. 4.3 of the main paper, we plot

the error distributions in Fig. S3 and the uncertainty distri-
butions in Fig. S4. We observe in Fig. S3 that the fused
solutions (“DNN-Fusion”) are mostly equivalent to the ge-
ometric solutions (“5pt&BA”), except for those cases with
highest geometric uncertainties. This is because the learned
uncertainties are in general far higher than the geometric
uncertainties, as can be seen in Fig. S4. This holds even for
the translation estimation.

S2. Further Analyses

Geometric Uncertainty vs. DNN Uncertainty As men-
tioned in the main paper, the smoothed curves provide clearer
visualizations of the overall trend, but may give an impres-
sion that the DNN does not have any impact at the rotation
part. To clarify this, we provide more detailed analyses on
the uncertainty of each individual test sample. Specifically,
we plot the uncertainty for each test sample without smooth-
ing in Fig. S5, with y-axis in log scale for better visualization.
As can be seen, this clearly reveals the cases where the DNN
rotation uncertainties are lower (higher inverse variances)
than the geometric rotation uncertainties, and hence do make
a difference to the fused solution.

Generalization to ScanNet Here, we analyze the behavior
of our network on ScanNet [1] to study its generalization
across different datasets. As mentioned in the main paper,
we use the outdoor model of SuperGlue [6] to prevent po-
tential overlapping between our test set and SuperGlue’s
training set. Following the study in Sec. 4.3 of the main
paper, we compare the geometric error/uncertainty and DNN
error/uncertainty in Fig. S6 and Fig. S7. Similar to the anal-
yses in the preceding paragraph, we plot the uncertainty for
each test sample without smoothing in Fig. S8, with y-axis
in log scale for better visualization. Overall, we observe that
the network behaves similarly as on the DeMoN datasets.
In cases with larger geometric uncertainties (i.e. lower in-
verse variances), the fused solutions surpass the geometric
solutions significantly in terms of accuracy. Conversely, in
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Figure S1. Overview of our geometric-DNN pose fusion network, which fuse the geometric solution with the DNN prediction in training.

MVS Scenes11 RGB-D Sun3D All
Rot. Tran. Rot. Tran. Rot. Tran. Rot. Tran. Rot. Tran.

Aleatoric Uncertainty
w/ fusion 4.875 6.749 0.878 5.548 4.882 13.140 3.121 12.510 3.027 8.801

Aleatoric Uncertainty
w/o fusion 2.890 4.954 0.375 2.956 1.813 13.650 1.273 11.750 1.371 7.694

UA-Fusion 2.502 4.506 0.388 3.001 1.480 10.520 1.340 11.830 1.246 6.888

Table S1. Comparison with the aleatoric uncertainty learning method, including the plain DNN prediction and the post-processing fusion
with the geometric solution.

Figure S2. Study of spatial distances (pixels) against attentions.

cases with lower geometric uncertainties, the fused solutions
mostly keep the geometric solutions. This corroborates the
intuition that motivates our work. Furthermore, we observe
that the uncertainty distributions bear close resemblance to
those obtained from the DeMoN datasets in the main paper,
demonstrating the generalization capability of the network.

Self-attention We have discussed in the main paper the
empirically observed correlation between the attention and
the spatial distance between different pairs of correspon-
dences, as shown in Fig. S2. We reckon that, the increasing
attention on the pair of correspondences with decreasing
spatial distance is due to the increasing difficulty to extract
additional pose-related information from two points closer
to each other. However, we would also like to note here
that such trend is not incessant – it may not be beneficial to

attend to the relationship between two pairs of correspon-
dences that are extremely close to each other; in the extreme
case, the two pairs of correspondences merge to one and
there is no any extra information to extract. We surmise that
this is the reason causing the noticeable uptick in Fig. S2 as
highlighted by the red circle.

S3. Further Implementation Details

Network Parameters In what follows, we discuss the
detailed parameters of the MLPs in different parts of UA-
fusion. For clarity, we provide our overall architecture in
Fig. S1 for reference. The correspondence encoder (“1”
in Fig. S1) consists of an MLP with layer size [32, 64,
128, 128]. The MLP for computing updated feature in mes-
sage passing (Eq. (6) in the main paper) is of layer size
[128, 128]. The feature output by the four sequential self-
attention message passing layers are then passed through a
single-layer MLP (“2” in Fig. S1) with layer size 128. This
yields the geometric feature, which, after average pooling,
is concatenated with the 512-dimension appearance feature
from ResNet-34, and passed to the pose (“3” in Fig. S1)
and uncertainty (“4” in Fig. S1) prediction branches. The
pose branch is an MLP with layer size [512, 256, 6], pre-
dicting {tx,d, ty,d, tz,d, φy,d, φp,d, φr,d}. We then convert
{tx,d, ty,d, tz,d} to {αd, βd}; note that we do not directly
regress {αd, βd} due to their discontinuity. The uncertainty
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Figure S3. Error comparison between geo-
metric and DNN predictions by learning
aleatoric uncertainty.
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Figure S4. Comparison between the geometric and DNN aleatoric uncertainty for each
parameter in {θt,θR}.

branch is an MLP with layer size [512, 256, 5], predicting the
inverse variance (1/σ2

α,d, 1/σ
2
β,d, 1/σ

2
y,d, 1/σ

2
p,d, 1/σ

2
r,d).

In an MLP, all the layers except for the last one are followed
by ReLu and batch normalization.

Implementation details Our network is implemented
with Pytorch using Adam [3] optimizer with a 10−4 learn-
ing rate. The input images are always resized to 192x256.
We adopt an iterative training scheme; we first train the fea-
ture extraction network and the pose branch, then with the
feature extraction network fixed, we alternatively train the
pose and uncertainty branch till convergence. We train on
batches formed by 36/24/16 images with 256/512/768 pairs
of correspondences. Since the feature matcher may return
varying number of correspondences, we achieve this by ran-
domly repeat or discard some correspondences. In addition
to keypoint locations, attempts were also made to provide
the descriptors and scores as network inputs, which yield
similar performances, so are omitted.

We would also like to mention here that the block sparsity
of the Jacobian is leveraged for efficient computation, as
typically done in bundle adjustment [7]. The geometric
inverse variance is set to 0, i.e. infinitely large uncertainty, if
the geometric method completely fails.
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Figure S5. Visualization of the geometric and DNN uncertainty for each test sample on DeMoN.
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Figure S6. Error comparison between geo-
metric and DNN predictions on ScanNet.
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Figure S7. Comparison between the geometric and DNN uncertainty for each parameter in
{θt,θR} on ScanNet.

0 250 500 750 1000 1250 1500 1750 2000
test samples sorted by Et, g

10−1

100

101

102

103

104

105

In
ve

rs
e 
In
va

ria
nc

e 
1/
σ2 α

(a)  α
5pt&BA DNN

0 250 500 750 1000 1250 1500 1750 2000
test samples index, sorted by  Et, g

10−3

10−1

101

103

105

In
ve

rs
e 
In
va

ria
nc

e 
1/
σ2 β

(b)  β

0 250 500 750 1000 1250 1500 1750 2000
test samples sorted by  ER, g

101

102

103

104

105

106

107

In
ve

rs
e 
In
va

ria
nc

e 
1/
σ2 y

(c)  ϕy

0 250 500 750 1000 1250 1500 1750 2000
test samples sorted by  ER, g

102

103

104

105

106

107

In
ve

rs
e 
In
va

ria
nc

e 
σ2 p

(d)  ϕp

0 250 500 750 1000 1250 1500 1750 2000
test samples sorted by  ER, g

102

103

104

105

106

107

In
ve

rs
e 
In
va

ria
nc

e 
σ2 r

(e)  ϕr

Figure S8. Visualization of the geometric and DNN uncertainty for each test sample on ScanNet.
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